There's a Fungus Among Us! Fungi

Complex Multicellularity

- there are three kingdoms that exhibit complex multicellularity in which individuals are composed of many highly specialized cells
 - plants
 - animals
 - fungi
- two key characteristics of complex multicellular organisms distinguish them from simple multicellular organisms
 - cell specialization
 - intercellular coordination
- cell specialization requires that different cells use different genes
 - different genes are activated during development
- intercellular coordination involves the adjustment of a cell's activity in response to what other cells are doing
 - the cells of all complex multicellular organisms communicate with one another with chemical signals called hormones

A Fungus is Not a Plant

- the fungi are a distinct kingdom of organisms, comprising about 74K species
 - mycologists are scientists who study fungi
- there are many significant differences between fungi and plants, including
 - fungi are hetertrophs
 - fungi have filamentous bodies
 - fungi have nonmotile sperm
 - fungi have cell walls made of chitin
 - fungi have nuclear mitosis
- fungi exist mainly in the form of slender filaments called **hyphae** (singular, **hypha**)
 - each hypha is basically a long string of cells
 - different hypha can associate with each other to form much larger structures
 - a mass of hyphae is called a **mycelium**
 - the mycelium is not the conspicuous mushroom but the extensive network of fine hyphae that penetrate the soil, wood, or flesh in which the fungus is growing
 - the mycelium may contain many meters of hyphae

The Body of a Fungus

• fungal cells can intercommunicate because fungal cells are separated by incomplete

septa (singular, septum)

- cytoplasm can flow freely among the cells of the hypha
- many nuclei may be connected together by the shared cytoplasm
- proteins synthesized throughout the hyphae can be carried to hyphal tips
- all parts of the fungal body are metabolically active

Septum and pore between cells in a hypha.

Reproduction and Nutrition of Fungi

- fungi reproduce both asexually and sexually
 - all fungal nuclei, except for the zygote, are haploid
 - often in sexual reproduction of fungi, different "mating types" must participate
 - when two hyphae of different mating types come into contact, the hyphae fuse
- in most fungi, the nuclei of two fused hyphae do not fuse immediately but coexist in the cytoplasm
 - **dikaryotic** is a fungal hypha that has two nuclei
 - if the nuclei are from genetically different individuals, it is a called a **heterokaryon**
 - if the nuclei are genetically similar, then the hypha is said to be a **homokaryon**
- when reproductive structures do form in fungi, complete septa separate the reproductive cells from the rest of the fungal body
- there are three kinds of reproductive structures formed
 - **gametangia** form haploid gametes
 - **sporangia** form haploid spores
 - **conidiophores** form asexual spores (**conidia**)
- spores are a common means of reproduction among the fungi
- spores are well suited to the needs of an organism anchored to one place
- spores are small and light and remain suspended in the air for long periods of time and may be carried great distances
- when a spore lands in a suitable environment, it germinates and begins to divide, forming a new fungal hypha

Many fungi produce spores.

- all fungi perform external digestion
 - they secrete digestive enzymes into their surroundings and then absorb back into their bodies any organic molecules
 - many fungi are able to break down the cellulose in wood
 - some fungi are carnivores
 - for example, oyster fungus attracts nematode worms and then feeds upon them

The oyster mushroom.

Kinds of Fungi

- there are four fungal phyla that are distinguished from another mainly on the bases of their mode of sexual reproduction
 - Zygomycota
 - Ascomycota
 - Basidiomycota
 - Chytridiomycota
- a fifth group, the imperfect fungi, comprises members not known to reproduce sexually

Fungi

Zygomycetes

- the zygomycetes belong to the phylum Zygomycota
 - these fungi are unique in that the fusion of hyphae does not produce a heterokaryon
 - instead, the two nuclei fuse and form a single diploid nucleus
 - this fusion produces a zygote
- reproduction among the zygomycetes is typically asexual
 - a cell at the hyphal tip becomes isolated by a complete septum
 - an erect stalk tipped by a sporangium forms from this cell and produces haploid spores
 - these spores are shed into the wind and blown to new locations
 - the spores germinate and become new hyphae
- sexual reproduction is unusual in the zygomycetes but may occur in times of stress
 - hyphae from two different mating strains fuse and their nuclei also fuse, producing a diploid zygote
- at the point where the two hyphae fuse, a resistant structure called a **zygosporangium** forms
 - the zygosporangium can remain dormant until conditions become favorable again
 - when favorable, the zygosporangium forms a stalked structure topped with a sporangium
 - meiosis produces haploid spores in the sporangium, which are released to the air

Life cycle of a zygomycete.

Ascomycetes

- the phylum Ascomycota contains the ascomycetes and is the largest of the four fungal phyla
- reproduction among the ascomycotes is usually asexual
 - the tips of the hyphae become isolated by the formation of a complete septum and

form asexual spores called conidia

- each conidia often contains several nuclei but the spores are haploid
- the conidia are dispersed by wind to another place, where it germinates to form a new hypha
- the ascomycetes are named for their sexual reproductive structure, the **ascus** (plural, **asci**)
 - the ascus differentiates into a larger structure, called the **ascocarp**
 - each ascus is a microscopic cell that forms on the tips of the hyphae within the ascocarp
 - the ascus is where the zygote forms

Ascomycetes

- in ascomycetes, the zygote is the only diploid nucleus of the entire life cycle
- when a mature ascus bursts, individual spores (called **ascospores**) are thrown great distances

Life cycle of an ascomycete.

Basidiomycetes

- the basidiomycetes comprise the phylum Basidiomycota
 - the life cycle begins with the production of a hypha from a germinating spore
 - when the hyphae of two different mating types fuse, they form cells in which the nuclei remain separate
 - asexual reproduction is infrequent among members of this group
- sexual reproduction occurs when the two nuclei fuse to form zygotes
 - the site for fusion occurs within a club-shaped reproductive structure, called the basidium (plural, basidia)
 - around the many thousands of basidia, the mycelium forms a complex called the basidiocarp or mushroom
 - meiosis occurs in each basidium to produce spores called basidiospores

Life cycle of a basidiomycete.

Chytridiomycetes, Imperfect Fungi, and Yeasts

- members of the phylum Chytridiomycota, the chytrids, are the most primitive fungi in that they retain flagellated gametes
- several species are plant pathogens and one is thought to be a potential pathogen of frogs

The pathogenic chytrid, Batrachochytrium dendrobatidis, has infected this frog.

- there are more than 17K described species of fungi in who sexual reproduction has not been observed
- these are the so-called imperfect fungi and appear to have lost the ability to reproduce sexually
- many skin diseases are caused by imperfect fungi

Imperfect fungi.

- yeast is the generic name given to any unicellular fungus
- most of yeast production is asexual and takes place by cell fission or budding
- sexual reproduction takes place when two yeast cells fuse
- the new cell containing two nuclei functions as an ascus

Budding in Saccharomyces.

Ecological Roles of Fungi

- fungi, together with bacteria, are the principal decomposers in the biosphere
- fungi are virtually the only organisms capable of breaking down lignin in wood
- fungi, by breaking down substances release critical building blocks from the bodies of dead organisms and make them available to other organisms
- fungi often act as disease-causing organisms for both plants and animals
- · fungi have many important commercial uses
 - the manufacture of bread, beer, wine, and soy sauce all depend on fungi
 - many antibiotics are derived from fungi
 - some fungi can be used to clean up toxic substances from the environment
- fungi are also involved in a variety of intimate symbiotic associations with algae and plants
 - the fungus contributes the ability to absorb minerals and other nutrients from the environment
 - the photosynthesizer contributes the ability to use sunlight to power the building of organic molecules
- two kinds of mutualistic associations between fungi and autotrophic organisms are ecologically important
 - mycorrhizae are symbiotic associations between fungi and the roots of plants
 - lichens are symbiotic associations between fungi and either green algae or cyanobacteria
- mycorrhizae occur in about 80% of all kinds of plants
 - they greatly increase the surface area of the root
 - filaments of the fungus act as superefficient root hairs and aid in the direct transfer

of phosphorous and other minerals from the soil into the roots of the plant

• the plant supplies organic carbon to the fungus

Mycorrhizae on the roots of pines.

- in almost all mycorrhizae, the fungal hyphae actually penetrate the outer cells of the plant root and extend far out into the soil
 - these are called **endomycorrhizae**
- in only some mycorrhizae, the fungal cells grow between but do not penetrate the roots
 - these are called **ectomycorrhizae**

Endomycorrhizae and ectomycorrhizae.

- a lichen is a symbiotic association between a fungus and a photosynthetic partner
 - most of the visible body of the lichen consists of its fungus but interwoven between hyphal layers are cyanobacteria, green algae, or both
 - lichens can invade harsh habitats but are sensitive to pollutants

Lichens growing on a rock.