The Development of a Four-Letter Language DNA

The Griffith Experiment

- Chromosomes are comprised of two types of macromolecules, proteins and DNA, but which one is the stuff of genes?
 - the answer was discovered from a variety of different experiments, all of which shared the same basic design
 - *if you separate the DNA in an individual's chromosomes from the protein, which of the two materials is able to change another individual's genes?*
- Frederick Griffith in 1928 experimented with pathogenic (i.e., disease-causing) bacteria
 - he experimented with two strains of *Streptococcus pneumoniae*
 - the virulent strain, called the S form, was coated with a polysaccharide capsule and caused infected mice to die of blood poisoning
 - a mutant form, called the R form, which lacked the capsule and was non-virulent
- Griffith determined that when dead bacteria of the S form were injected into mice, the mice remained healthy
- But, when Griffith injected mice with mixture of dead S bacteria and live bacteria of the R form, the mice unexpectedly died
 - the R form bacteria now had transformed into the virulent S variety

How Griffith discovered transformation

The Avery and Hershey-Chase Experiments

- The agent responsible for transforming *Streptococcus* went undiscovered until a classic series of experiments by Oswald Avery and his coworkers Colin MacLeod and Maclyn McCarty
 - they also worked with *Streptococcus* strains, both dead S and live R, but were able to remove first nearly 99.98% of the dead S
 - they found that the transforming principle was not reduced by the removal of the protein
- The Avery team discovered that the transforming principle resembled DNA in several ways
 - same chemistry and behavior as DNA
 - not affected by lipid and protein extraction
 - not destroyed by protein- or RNA-digesting enzymes
 - destroyed by DNA-digesting enzymes
- Based on this overwhelming evidence, the Avery team concluded that the heredity material was DNA

- Alfred Hershey and Martha Chase provided the final experimental evidence that pointed to DNA as the hereditary material
 - the team studied viruses that infect bacteria
 - the structure of these viruses is very simple: a core of DNA surrounded by a coat of protein
 - the viruses attach themselves to the surface of bacteria cells and inject their genes into the interior
 - the infected bacterial cell is then forced to make hundreds of copies of new viruses, which then burst out of the cell to infect new cells
- Hershey and Chase used radioactive isotopes to "label" or tag the DNA and the protein of the viruses
 - some viruses were grown so that their DNA contained radioactive phosphorus (³²P)
 - other viruses were grown so that their protein coats contained radioactive sulfur (³⁵S)
- After the labeled viruses were allowed to infect bacteria, only the viruses with ³²P had labeled tracer in their interior
- The conclusion was that the genes that viruses use to specify new viruses are made of DNA and not protein

Discovering the Structure of DNA

- In order to understand how DNA functioned as the molecules that stored heredity, researchers needed to understand the structure of DNA
 - DNA is comprised of subunits called nucleotides
 - each DNA nucleotide has three parts
 - a central deoxyribose sugar
 - a phosphate group
 - an organic base
- Nucleotides differ with regards to their bases
 - large bases (purines) with double-ring structure
 - either adenine (A) or guanine (G)
 - small bases (pyrimidines) with single rings
 - either cytosine (C) or thymine (T)
 - Edwin Chargaff noted that DNA molecules always had equal amounts of purines and pyrimidines
 - Chargaff's rule suggested that DNA had a regular structure
 - the amount of A always equaled the amount of T
 - the amount of C always equaled the amount of G

The four nucleotide subunits that make up DNA

• Rosalind Franklin's work in 1953 using

X-ray diffraction revealed that DNA had a regular structure that was shaped like a corkscrew, or **helix**

- Francis Crick and James Watson elaborated on the discoveries of Franklin and Chargaff and deduced that the structure of DNA was a **double helix**
 - two strands of DNA bind together by their bases
 - because a purine of one strand binds to a pyrimidine on the other strand to form a base pair, the molecule keeps a constant thickness

The DNA double helix

How the DNA Molecule Copies Itself

- The two strands of DNA that form the double helix DNA molecule are complementary to each other
 - each chain is essentially a mirror image of the other
 - this **complementarity** makes it possible for DNA to copy itself in preparation for cell division
- There are three possible alternatives as to how the DNA could serve as a template for the assembly of new DNA molecules
 - conservation replication
 - the two strands of DNA completely separate to act as templates for the assembly of two new strands
 - after replicating, the original strands rejoin, preserving the original DNA molecule and leaving a completely new one
 - Semi-conservative replication
 - the DNA unzips and new complementary strands are assembled using each strand as a template
 - one original strand is preserved in each duplex created
 - dispersive replication
 - replication results in both original and new DNA dispersed among the two daughter strands

Alternative Mechanisms for DNA replication

- Matthew Meselson and Franklin Stahl tested, in 1958, the three alternative hypotheses for the replication of DNA
 - they used radioactive isotopes of N to label DNA prior to and after replication
 - they found that DNA replication was semi-conservative

The Meselson-Stahl experiment

- The process of DNA replication involves several enzymes
 - DNA polymerase
 - adds the correct complementary nucleotide to the growing daughter strand

• but can only add to an existing strand or primer

helicase

- unzips the DNA to expose the templates
- this creates a **replication fork**
- DNA ligase
 - seals fragments of DNA together

How nucleotides are added in DNA replication

- At the replication fork, a primer must first be added to give a place for DNA polymerase to start
 - from one template, DNA polymerase adds nucleotides in a continuous fashion; this new daughter strand is called the **leading strand**
 - because the other template is a mirror image, directionality becomes a problem because DNA can build a new strand in one direction only
 - this second daughter strand is assembled is segments, each one beginning with a primer
 - the segments will be joined together to form the lagging strand

Building the leading and lagging strands

- Before the newly formed DNA molecules wind back into the double helix shape, the primers must be removed and the DNA fragments sealed together
 - DNA ligase joins the ends of the fragments of DNA to form continuous strands

How DNA replication works

- Because so much DNA is being replicated in the many cells of the body, there is a potential for errors to occur
 - DNA repair involves comparing the daughter strand to the parent DNA template to check for mistakes
 - the proofreading is not perfect because mutations are still possible, although rare

Mutation

- · There are two general ways in which to alter the genetic message encoded in DNA
 - mutation
 - results from errors in replication
 - can involve changes, additions, or deletions to nucleotides
 - recombination
 - causes change in the position of all or part of a gene

- Mutations can alter the genetic message and affect protein synthesis
 - because most mutations occur randomly in a cell's DNA, most mutations are detrimental
 - the effect of a mutation depends on the identity of the cell where it occurs
 - mutations in germ-line cells
 - these mutations will be passed to future generations
 - they are important for evolutionary change
 - mutations in somatic cells
 - not passed to future generations but passed to all other somatic cells derived from it
- Some mutations alter the sequence of DNA nucleotides
 - base substitution changes the identity of a base or bases
 - insertion adds a base or bases
 - **deletion** removes a base of bases
- If the insertion or deletion throws the reading frame of the gene message out of register, a **frame-shift mutation results**
 - these are extremely detrimental because the final protein intended by the message may be altered or not made

Two types of mutations

- Some mutations affect how a genetic message is organized
 - **transposition** occurs when individual genes move from one place in the genome to another
 - sometimes entire regions of chromosomes may change their relative location or undergo duplication
 - this is called **chromosomal rearrangement**

Some Categories of Mutation

- All evolutionary change begins with mutation
 - mutation and recombination provide the raw materials for evolution
- Chemicals that causes mutation, called **mutagens**, appear to be linked to cancer
 - for example, chemicals in cigarette smoke cause cancer