It's the Small Things That Make the Big Differences... Mendelian Genetics

Mendel and the Garden Pea

- Heredity is the tendency for traits to be passed from parent to offspring
 - heritable features are called characters
 - traits are alternative forms of a character
- Before the discovery of DNA and chromosomes, principles of heredity were first identified by quantitative science (i.e., counting and measuring)
 - Gregor Mendel solved the puzzle of heredity

Gregor Mendel

- Gregor Mendel performed experiments with garden peas
 - peas are ideally suited to the study of heredity
 - many varieties are available with easily distinguishable traits that can be quantitified
 - they are small, easy to grow, and produce large numbers of offspring quickly
 - their reproductive organs can be easily manipulated so that pollination can be controlled
 - they can self-fertilize
- Mendel had a specific experimental design
 - he first established **true-breeding** varieties
 - by allowing plants to self-fertilize for several generations, he ensured that each variety contained only one type of trait
 - he named these pure lines the **P** generation
 - he then crossed two varieties exhibiting alternative traits
 he named the resulting offspring the F₁ generation
 - he then allowed the plants from the F₁ generation to self-fertilize
 - he named the resulting offspring the F_2 generation

How Mendel conducted his experiments

What Mendel Observed

- Mendel experimented with a variety of traits and repeatedly made the same observations
 - for each pair of contrasting varieties that he crossed, one of the traits disappeared in the F1 generation but reappeared in the F2 generation
 - he called the trait expressed in the F1 generation the dominant trait
 - he named the trait not expressed in the F1 generation the recessive trait
- Mendel counted the number of each type of plant in the F2 generation
 - he found a consistent proportion in expressed traits for his different crosses

- three-fourths of the F2 individuals expressed the dominant trait while one-fourth expressed the recessive trait
- the dominant: recessive ratio among the F2 plants was always close to 3:1

Seven Characters Mendel Studied in his Experiments

- Mendel reasoned that the recessive trait must somehow be hidden in the F₁ generation but just not expressed
- He allowed the F_2 to self-fertilize and form the F_3 generation
 - . he found that one-fourth of the plants from the F_2 that were recessive were true-breeding in the F_3
 - he found that of the three-fourths of the plants from the F_2
 - . only one-third were true breeding in the F_3
 - the remaining half showed both traits
- He determined that the ratio of 3:1 ratio that he observed in the F₂ generation was in fact a disguised 1:2:1 ratio

1	2		1
true-breeding	: not true-breeding	:	true-breeding
dominant	dominant		recessive

The F₂ generation is a disguised 1:2:1 ratio

Mendel Proposes a Theory

- Mendel proposed a simple set of five hypotheses to explain his results
- Hypothesis 1
 - parents do not transmit traits directly to their offspring
 - parents transmit information about the trait in the form of what Mendel called factors
 - in modern terms, Mendel's factors as called genes
- Hypothesis 2
 - each parent contains two copies of the factor governing each trait
 - the two copies of the factor may or may not be the same
 - homozygous individuals have two of the same copies
 - heterozygous individuals have two different copies
- Hypothesis 3
 - alternative forms of a factor lead to alternative traits
 - alleles are defined as alternative forms of a factor

- appearance is determined by the alleles a plant receives from its parents
 - this is the plant's genotype
 - the expression of the alleles is the appearance or **phenotype**
- Hypothesis 4
 - the two alleles that an individual possesses do not affect each other
- Hypothesis 5
 - *the presence of an allele does not ensure that a trait will be expressed in the individual that carrier it*
 - in heterozygotes, only the dominant allele is expressed

Alternative alleles of genes are located on homologous chromosomes

Some Dominant and Recessive Traits in Humans

- By convention, genetic traits are assigned a letter symbol referring to their more common form
 - dominant traits are capitalized while a lower-case letter is reserved for the recessive trait
 - for example, flower color in peas is represented as follows
 - *P* signifies purple
 - *p* signifies white
- The results from a cross between a true-breeding, white-flowered plant (*pp*) and a true breeding, purple-flowered plant (*PP*) can be visualized with a **Punnett square**
- A Punnett square lists the possible gametes from one individual on one side of the square and the possible gametes from the other individual on the opposite side
- The genotypes of potential offspring are represented within the square

A Punnett square analysis

How Mendel analyzed flower color

- Mendel devised the **testcross** in order to determine the genotype of unknown individuals in the F₂ generation
 - the unknown individual is crossed with a homozygous recessive individual
 - if the unknown is homozygous, then all of the offspring will express dominant traits
 - if the unknown is heterozygous, then one-half of the offspring will express recessive traits

How Mendel used the testcross to detect heterozygotes

Mendel's Laws

- Mendel's hypotheses so neatly predict the results of his crosses that they have elevated to laws
 - Mendel's First Law: Segregation
 - the two alleles of a trait separate from each other during the formation of gametes, so that half of the gametes will carry one copy and half will carry the other copy
- Mendel also investigated the inheritance pattern for more than one factor
 - when crossing individuals who are true-breeding for two different characters, the F1 individual that results is a **dihybrid**
 - after the dihybrid individuals self-fertilize, there are 16 possible genotypes of offspring

Analysis of a dihybrid cross

- Mendel concluded that for the pairs of traits that he studied, the inheritance of one trait does not influence the inheritance of the other trait
 - Mendel's Second Law: Independent Assortment
 genes located on different chromosomes are inherited independently of one another

The journey from DNA to phenotype

Why Some Traits Don't Show Mendelian Inheritance

• Often the expression of phenotype is not straightforward

• Continuous variation

- characters can show a range of small differences when multiple genes act jointly to influence a character
 - this type of inheritance is called **polygenic**

Height is a continuously varying character

- Pleiotropic effects
 - an allele that has more than one effect on a phenotype is considered **pleiotropic**
 - these effects are characteristic of many inherited disorders, such as cystic fibrosis and sickle-cell anemia

Pleiotropic effects of the cystic fibrosis gene

• Incomplete dominance

- not all alternative alleles are either fully dominant or fully recessive in heterozygotes
 - in such cases, the alleles exhibit **incomplete dominance** and produce a heterozygous phenotype that is intermediate between those of the parents

Incomplete dominance

• Environmental effects

- the degree to which many alleles are expressed depends on the environment
- for example, some alleles are heat-sensitive
 - arctic foxes only produce fur pigment when temperatures are warm
 - the *ch* allele in Himalayan rabbits and Siamese cats encodes a heat-sensitive enzyme, called tyrosinase, that controls pigment production
 - tyrosinase is inactive at high temperatures

Environmental effects on an allele

• Epistasis

- in some situations, two or more genes interact with each other, such that one gene contributes to or masks the expression of the other gene
- in epistasis, one gene modifies the phenotypic expression produced by the other
- for example, in corn, to produce and deposit pigment, a plant must possess at least one function copy of each of two genes
 - one gene controls pigment deposition
 - the other gene controls pigment production

How epistasis affects kernel color

The effect of epistatic interactions on coat color in dogs

• Codominance

- a gene may have more than two alleles in a population
 - often, in heterozygotes, there is not a dominant allele but, instead, both alleles are expressed
 - these alleles are said to be **codominant**
- The gene that determines ABO blood type in humans exhibits more than one dominant allele
 - the gene encodes an enzyme that adds sugars to lipids on the membranes of red blood cells
 - these sugars act as recognition markers for cells in the immune system
 - the gene that encodes the enzyme, designated I, has three alleles: I^A , I^B , and i
 - different combinations of the three alleles produce four different phenotypes, or bloodtypes (A, B, AB, and O)
 - both $I^{\underline{A}}$ and $I^{\underline{B}}$ are dominant over *i* and also codominant

Multiple alleles controlling the ABO blood groups

Chromosomes Are the Vehicles of Mendelian Inheritance

- The chromosomal theory of inheritance was first proposed in 1902 by Walter Sutton
 - supported by several pieces of evidence
 - reproduction involves the initial union of only eggs and sperm
 - each gamete contains only copy of the genetic information
 - since sperm have little cytoplasm, the material contributed must reside in the nucleus
 - · chromosomes both segregate and assort independently during meiosis
- A potential problem with the chromosomal theory of inheritance is that there are many more traits that assort independently than there are chromosomes
- Experimental study of the fruit fly, *Drosophila melanogaster*, by Thomas Hunt Morgan provided confirmation of the chromosomal theory of inheritance
- Morgan discovered, in 1910, a mutant male fruit fly who had white eyes instead of the typical red
 - he tried to determine whether this trait would be inherited by the Mendelian pattern
 - he crossed a mutant male with a normal female
 - as predicted, eye color segregated and all the F_1 individuals had red eyes
 - but, in the F_2 generation, only males were white-eyed and not females
- Morgan determined that sex was key to explaining the results of his cross
 - in fruit flies, sex is determined by the number of copies of a particular
 - chromosome, the X chromosome, that an individual possesses
 - a fly with two X chromosomes is female
 - in male flies, there is only one X chromosome and that is paired with a Y chromosome
- Morgan reasoned that the white-eyed trait resided only on the X chromosome
 - a trait determined by a gene on the sex chromosome is said to be **sex-linked**

Morgan's experiment demonstrating the chromosomal basis of sex linkage

- Morgan's demonstration of sex linkage in *Drosophila* confirmed the chromosomal theory of inheritance that Mendelian traits reside on chromosomes
 - it also explains why Mendel's First Law of Segregation works
 - traits assort independently because chromosomes assort independently

Human Chromosomes

- Each human somatic cell normally has 46 chromosomes, which in meiosis form 23 pairs
 - 22 of the 23 pairs are perfectly matched in both males and females and are called **autosomes**

- 1 pair are the sex chromosomes
 - females are designated XX while males are designated XY
 - the genes on the Y chromosome determine "maleness"
- Sometimes errors occur during meiosis
 - **nondisjunction** is the failure of chromosome to separate correctly during either meiosis I or meiosis II
 - this leads to **aneuploidy**, an abnormal chromosome number
 - most of these abnormalities cause a failure to develop or an early death before adulthood
 - in contrast individuals with an extra copy of chromosome 21 or, more rarely, chromosome 22 can survive to adulthood
 - however, these individuals have delayed development and mental impairment
 - Down syndrome is caused by having an extra copy of chromosome 21

Nondisjunction in anaphase I Down Syndrome

- Nondisjunction may also affect the sex chromosomes
 - nondisjunction of the X chromosome creates three possible viable conditions
 - XXX female
 - usually taller than average but other symptoms vary
 - XXY male (Klinefelter syndrome)
 - sterile male with many female characteristics and diminished mental capacity
 - XO female (Turner syndrome)
 - sterile female with webbed neck and diminished stature

Nondisjunction of the X chromosome

- Nondisjunction of the Y chromosome also occurs
 - in such cases, YY gametes are formed, leading to XYY males
 - these males are fertile and of normal appearance
 - The Role of Mutations in Human Heredity
- Accidental changes in genes are called **mutations**
 - mutations occur only rarely and almost always result in recessive alleles
 - not eliminated from the population because they are not usually expressed in most individuals (heterozygotes)
 - in some cases, particular mutant alleles have become more common in human populations and produce harmful effects called **genetic disorders**

Some Important Genetic Disorders

- To study human heredity, scientists examine crosses that have already been made
 - the identiy which relatives exhibit a trait by looking at family trees or **pedigree**
 - often one can determine whether a trait is sex-linked or autosomal and whether the trait's phenotype is dominant or recessive
 - for example, hemophilia is a sex-linked trait

A general pedigree

The Royal hemophilia pedigree

- Sickle-cell anemia is a recessive hereditary disorder
 - affected individuals are homozygous recessive and carry a mutated gene that produces a defective version of hemoglobin
 - the hemoglobin sticks together inappropriately and produces a stiff red blood cell with a sickle-shape
 - the cells cannot move through the blood vessels easily and tends to clot
 this causes sufferers to have intermittent illness and shortened life spans
- The sickle-cell mutation to hemoglobin affects the stickiness of the hemoglobin protein surface but not its oxygen-binding ability
- Heterozygous individuals have some of their red blood cells become sickled when oxygen levels become low
 - this may explain why the sickle-cell allele is so frequent among people of African descent
 - the presence of the allele increases resistance to malaria infection

Sickle-cell Anemia

- Tay-Sachs disease is another disease caused by a recessive allele
 - it is an incurable disorder in which the brain deteriorates
 - sufferers rarely live beyond five years of age
- Huntington's disease is a genetic disorder caused by a dominant allele
 - it causes progressive deterioration of brain cells
 - every individual who carries the allele expresses the disorder but most persons do not know they are affected until they are more than 30 years old

Huntington's disease is a dominant genetic disorder

Genetic Counseling and Therapy

• Genetic counseling is the process of identifying parents at risk of producing children with genetic defects and of assessing the genetic state of early embryos

- One method of genetic counseling focuses on identify high-risk pregnancies
 - through pedigree analysis, one can identify the chances of both parents being heterozygote carriers of an allele for a recessive genetic disorder
 - high-risk pregnancies are also identified when the mothers are more than 35 years old
- Genetic counselors also utilize genetic screening
 - **amniocentesis** is when amniotic fluid is sampled and isolated fetal cells are then grown in culture and analyzed
 - **chorionic villus sampling** is when fetal cells from the chorion in the placenta are removed for analysis

Amniocentesis

- Genetic counselors look at three things from the cell cultures obtained from either amniocentesis or chorionic villus sampling
 - chromosomal karyotype
 - analysis can reveal aneuploidy or gross chromosomal alterations
 - enzyme activity
 - in some cases, it is possible to test directly for the proper functioning of enzymes associated with genetic disorders
 - genetic markers
 - test for the presence of mutations at the same place on chromosomes where disorder-causing mutations are found
- **DNA screening** is the most recent form of genetic counseling and screens DNA for the presence of key genes
 - utilizing information from the Human Genome Project, the DNA of patients is assessed for copies of genes that lead to hereditary disorders, such as cystic fibrosis and muscular dystrophy
 - in addition, parents conceiving by in vitro fertilization (i.e., test-tube babies) can screen zygotes for potential genetic anomalies
 - this procedure is called **preimplantation screening**

Pre-implantation genetic diagnosis