Just Like the Guy From Krypton... Photosynthesis

An Overview of Photosynthesis

- Most of the energy used by almost all living cells ultimately comes from the sun
 - plants, algae, and some bacteria capture the sunlight energy by a process called photosynthesis
 - only about 1% of the available energy in sunlight is captured
- Photosynthesis takes places in three stages
 - 1. capturing energy from sunlight
 - 2. using the captured energy to produce ATP and NADPH
 - **3**. using the ATP and NADPH to make carbohydrates from CO₂ in the atmosphere
- The overall reaction for photosynthesis may be summarized by this equation

$$6 \text{ CO}_2 + 12 \text{ H}_2\text{O} + \text{light} \rightarrow \text{C}_6\text{H}_{12}\text{O}_6 + 6 \text{ H}_2\text{O} + 6 \text{ O}_2$$

- The process of photosynthesis is divided into two types of reactions
 - light-dependent reactions
 - take place only in the presence of light and produce ATP and NADPH
 - light-independent reactions
 - \cdot do not need light to occur and result in the formation of organic molecules
 - more commonly known as the **Calvin cycle**
- All stages of photosynthesis take place in the chloroplast
 - the chloroplast contains internal membranes called **thylakoids**
 - the thylakoids are stacked together in columns called grana
 - the **stroma** is a semiliquid substance that surrounds the thylakloids
- The **photosystem** is the starting point of photosynthesis
 - it is a network of pigments in the membrane of the thylakoid
 - the primary pigment of a photosystem is chlorophyll
 - the pigments act as an antenna to capture energy from sunlight
 - individual chlorophyll pigments pass the captured energy between them

Journey into a leaf

Journey into a leaf

How Plants Capture Energy from Sunlight

- Light is comprised of packets of energy called **photons**
 - sunlight has photons of varying energy levels
 - the possible range of energy levels is represented by an **electromagnetic spectrum**
 - human eyes only perceive photons of intermediate energy levels
 - this range of the spectrum is known as **visible light** Photons of different energy: the electromagnetic spectrum
- **Pigments** are molecules that absorb light energy
 - the main pigment in plants is chlorophyll
 - chlorophyll absorbs light at the end of the visible spectrum, mainly blue and red light
 - plants also contain other pigments, called accessory pigments, that absorb light levels that chlorophyll does not
 - these pigments give color to flowers, fruits, and vegetables
 - they are present in leaves too but masked by chlorophyll until the fall when the chlorophyll is broken down

Absorption spectra of chlorophylls and carotenoids

Organizing Pigments into Photosystems

- In plants, the light-dependent reactions occur within a complex of proteins and pigments called **photosystems**
 - light energy is first captured by any one of the chlorophyll pigments
 - the energy is passed along to other pigments until it reaches the **reaction center** chlorophyll molecule
 - the reaction center then releases an excited electron, which is then transferred to an electron acceptor
 - the excited electron that is lost is then replaced by an electron donor

How a photosystem works

- The light-dependent reactions in plants and algae use two photosystems
 - Photosystem II
 - captures a photon of light and releases an excited electron to the electron transport system (ETS)
 - the ETS then produces ATP
 - a molecule of water is split to replace the excited electron from the reaction center
 - Photosystem I
 - absorbs another photon of light and releases an excited electron to another ETS – the ETS produces NADPH
 - the electron from photosystem II replaces the electron from the reaction center

Plants use two photosystems

How Photosystems Convert Light to Chemical Energy

- Plants produce both ATP and NADPH by **non-cyclic photophosphorylation**
 - the excited electrons flow through both photosystems and end up in NADPH
 - high energy electrons generated by photosystem II are used to make ATP and then passed along to photosystem I to drive the production of NADPH
- Photosystem II
 - its reaction center consists of more than ten transmembrane proteins
 - this is surrounded by an antenna complex of pigments that funnel captured photons to the reaction center
 - the reaction center yields an excited electron to the primary electron acceptor
 - water is split to provide replacement electrons to the reaction center, resulting in the production of O_2
- The electron transport system (ETS) receives the excited electron from the electron acceptor
 - the ETS is comprised of proteins that are embedded in the thylakoid membrane
 - one of these proteins acts as a proton pump to move a proton from the stroma into the thylakoid space
 - at the end of the ETS, the electron is passed to the reaction center of photosystem I
- As a result of the proton pump of the ETS, a large concentration of protons builds up in the thylakoid space
 - the thylakoid membrane is impermeable to protons
 - protons can only re-enter the stroma by traveling through a protein channel called ATP synthase
 - the protons follow their concentration gradient in a process called **chemiosmosis**
 - as protons cross the ATP synthase, ADP is phosphorylated into ATP

Chemiosmosis in a chloroplast

- Photosystem I
 - its reaction center is comprised of a membrane complex of at least 13 protein subunits
 - this is surrounded by an **antenna complex** of pigments that funnel captured photons to the reaction center
 - the reaction center yields an excited electron to an electron to an ETS that in turn reduces NADP⁺ into NADPH
 - because this removes a proton from the stroma, the production of NADP also aids in establishing the proton gradient for chemiosmosis to occur

The photosynthetic electron transport system

Building New Molecules

- Cells use the products of the light-dependent reactions to build organic molecules
 - ATP is needed to drive endergonic reactions
 - NADPH is needed to provide reducing power in the form of hydrogens
- The synthesis of new molecules employs the light-independent, or Calvin cycle, reactions
 - these reactions are also known as C₃ photosynthesis
- The Calvin cycle reactions occur in three stages
 - 1. Carbon fixation
 - carbon from CO2 in the air is attached to an organic molecule, RUBP
 - 2. Making sugars
 - the carbons are shuffled about through a series of reactions to make sugars
 - 3. Reforming RUBP
 - the remaining molecules are used to reform RUBP

How the Calvin cycle works

- The Calvin cycle must "turn" 6 times in order to form a new glucose molecule
 - only one carbon is added from CO₂ per turn
- The Calvin cycle also recycles reactants needed for the light-dependent reactions
 - it returns ADP so that it is available for chemiosmosis in photosystem II
 - it returns NADP+ back to the ETS of photosystem I

Reactions of the Calvin cycle

Photorespiration: Putting the Brakes on Photosynthesis

- Many plants have trouble carrying out C₃ photosynthesis when it is hot
 - plants close openings in their leaves, called stomata (singular, stoma), in order to prevent water loss
 - the closed stoma also prevent gas exchange
 - O₂ levels build up inside the leaves while the concentrations of CO₂ fall
 - the enzyme rubisco in the Calvin cycle fixes oxygen to RUBP instead of carbon
 - this process is called **photorespiration** and short-circuits photosynthesis

Plant response to hot weather

- Some plants have adapted to hot climates by performing C₄ photosynthesis
 - these C₄ plants include plants, such as sugarcane, corn, and many grasses
 - they fix carbon using different types of cells and reactions than C₃ plants and do

not run out of CO₂ even in hot weather

• CO₂ becomes trapped in cells called **bundle-sheath cells**

Carbon fixation in C₄ plants

- Another strategy to avoid a reduction in photosynthesis in hot weather occurs in many succulent (water-storing) plants, such as cacti and pineapples
 - these plants undergo **crassulacean acid metabolism (CAM)**
 - photosynthesis occurs via the C₄ pathway at night and the C₃ pathway during the day

Comparing carbon fixation in C₄ and CAM plants