A Lecture With a Little Bit of Backbone Vertebrate History

The Paleozoic Era

- scientists divide the earth's past into different time periods
 - large blocks of time are called eras
 - smaller blocks of time are called **periods**
- some periods are divided into epochs, which in turn can be divided into ages

An evolutionary timeline.

- virtually all of the animals that survive at the present time originated in the sea at the beginning of the **Paleozoic era**
 - the diversification of animal life began soon after the Cambrian period (545-490 M.Y.A.)
 - some Cambrian animals, such as trilobites, have no surviving close relatives
 - the first vertebrates evolved about 500 M.Y.A.

Life in the Cambrian.

- while most of the animal phyla that evolved in the Cambrian remained marine, a few phyla, a few successfully invaded land
 - fungi and plants were the first terrestrial organisms, appearing over 500 M.Y.A.
 - arthropods were the first terrestrial animals, invading land about 410 M.Y.A.
 - vertebrates invaded the land during the Carboniferous period (360-280 M.Y.A.)
 amphibians were the first terrestrial vertebrates, preceding the reptiles, birds, and mammals
- mass extinctions are particularly sharp declines in species diversity
 - five mass extinctions have occurred during the history of life
 - the most drastic during the last ten million years of the **Permian period**, which marked the end of the Paleozoic era
 - an estimated 96% of all species of marine animals became extinct
 - the most well-studied occurred at the end of the **Cretaceous period** (65 M.Y.A.)
 - it was probably triggered by a large asteroid hitting the earth
 - dinosaurs went extinct at this time
- mass extinctions left vacant many ecological opportunities
 - these extinctions are always followed by rapid evolution among the relatively few species that survived
- we are currently experiencing a sixth mass extinction event
 - the number of species in the world is greater today than it has ever been

- but the number of species is declining at a rapid rate due to human activity
- some predict that as many as 25% of all species will become extinct in the near future

The Mesozoic Era

- the **Mesozoic era** (248-65 M.Y.A.) was a time of intensive evolution of terrestrial plants and animals
 - dinosaurs and mammals appear at about the same time (i.e., 200 to 220 M.Y.A.),
 but the dinosaurs filled the evolutionary niche for large animals
 - for over 150 million years, dinosaurs dominate the surface of the earth
 - dinosaurs reached the height of their diversification and dominance during the Jurassic and Cretaceous periods

An early reptile: the pelycosaur.

- the Mesozoic era has traditionally been divided into three periods:
 - Triassic
 - Jurassic
 - Cretaceous
- because of the major extinction that ended the Paleozoic era, only 4% of species survived into the Mesozoic

Dinosaurs.

Some dinosaurs were truly enormous.

- about 65 M.Y.A., at the end of the Cretaceous period, dinosaurs disappeared
 - this loss included flying reptiles (pterosaurs) and the great marine reptiles
 - mammals occupied the niches left open by the loss of the dinosaurs

An extinct flying reptile.

Extinction of the dinosaurs.

- many explanations have been advanced to explain the demise of the dinosaurs
 - the most widely accepted, proposed by Luis W. Alvarez, blames an asteroid impact
 - iridium is an element rare on earth but abundant in meteorites
 - a layer of iridium is abundant in many parts of the world in a layer of sediment that dates to the end of the Cretaceous period

The Cenozoic Era

- the early **Cenozoic era** (65 M.Y.A. to present) was relatively warm compared to today's colder and drier climate
- the first half of the era was very warm with jungle-like forests at the poles
- a gradual cooling caused ice caps to form at the poles
 - the glaciation of Antarctica became fully established by about 13 M.Y.A.
- this was followed by a series of ice ages
 - the most recent ice age occurred less than 1 M.Y.A.
- many very large mammals evolved during the ice ages including:
 - mastodons, mammoths, saber-toothed tigers, and cave bears

Fishes Dominate the Sea

- a series of key evolutionary advances allowed vertebrates first to conquer the sea and then the land
- about half of all vertebrates are fishes
 - fishes provide the evolutionary base for the invasion by land by amphibians

Vertebrate family tree.

- all fishes have four important characteristics in common
 - gills
 - gills are used to extract dissolved oxygen from water
 - vertebral column
 - all fishes have an internal skeleton with a spine
 - single-loop blood circulation
 - blood is pumped in a single loop
 - the loop runs from the heart to the gills, then to the body, and returns to the heart

nutritional deficiencies

- fishes are unable to synthesize the aromatic amino acids and must consume them in their diet
- this trait has been inherited by all of their vertebrate descendants
- the first fishes were jawless and appeared in the sea about 500 M.Y.A.
 - **agnathans** are surviving jawless fishes found today
 - they include hagfish and lampreys

- jawed fishes appeared around 410 M.Y.A.
 - jaws evolved from the frontmost of a series of cartilages that reinforced the tissue between gill slits
- the earliest jawed fishes were heavily armored but have been replaced, for the last 250 million years, by sharks or bony fishes
- sharks replaced the heavy body armor with a flexible skeleton made of cartilage
 - this made possible fast and maneuverable swimming
- sharks, along with skates and rays, belong to the class Chondrichthyes
 - there are 750 species in this class today
 - while some are filter feeders, most sharks are predators and have a mouth armed with rows of sharp teeth
 - shark eggs are fertilized internally
 - about 40% of the chrondrichthyans lay fertilized eggs
 - the remainder give birth to live young

Chondrichthyes.

- bony fishes have a heavier internal skeleton made of bone
 - but they achieve maneuverability through the aid of a swim bladder, a gas-filled sac that allow fish to regulate their buoyant density
 - the swim bladder allows a bony fish to remain suspended at any depth in the water without expending effort
 - sharks gain buoyancy from oil production in their livers, but they must still actively move to counteract their denser-than-water bodies

Diagram of a swim bladder.

- bony fishes comprise the class **Osteichthyes**
 - some bony fishes are lobe-finned (subclass **Sarcopterygii**)
 - this group includes the ancestors of the first tetrapods (four-legged animals)
 - other bony fishes are ray-finned (subclass Actinopterygii)
 - this group includes the vast majority of today's fishes
- bony fishes are the most successful of all fishes, indeed of all vertebrates
 - there are nearly 30K species of bony fishes

Major Classes of Fishes

• bony fishes have many adaptations that have helped make them such evolutionary successes

Iateral line system

- a special sensory system that enables fish to detect changes in water pressure
- operculum
 - a bony covering on top of the opening of the gills
 - this allows for the fish to ventilate the gills while remaining stationary

Amphibians Invade the Land

- the amphibians include frogs, salamanders, caecilians
 - they are the first terrestrial vertebrates and evolved from the lobe-finned fishes

Orders of Amphibians

- amphibians have five key characteristics that allowed them to invade land successfully
 - legs
 - Iungs
 - cutaneous respiration
 - pulmonary veins
 - partially divided heart
- approximately 4850 species exist today in the class Amphibia
- most of today's amphibians must reproduce in water and live the early part of their lives there

Reptiles Conquer the Land

- all living reptiles share the following fundamental characteristics
 - amniotic egg
 - this innovation is a watertight environment that offers the embryo protection against drying out
 - dry skin
 - reptiles are covered by scales or armor in order to prevent drying out
 - thoracic breathing
 - reptiles increase their lung capacity by expanding their chest cavity when breathing in air

A key adaptation of reptiles: watertight eggs.

• today some 7000 species of reptiles belong to the class Reptilia

- reptiles improved on the evolutionary innovations of amphibians to terrestrial life
 - reptilian legs were arranged to support better body weight and to facilitate more efficient locomotion
 - lungs and heart became more efficient in reptiles than in amphibians

Orders of Reptiles

Birds Master the Air

- birds evolved from bipedal dinosaurs about 150 M.Y.A.
 - they only became common after the pterosaurs became extinct
 - many scientists consider birds to be feathered dinosaurs, given their similarity in so many respects to dinosaurs
- modern birds lack teeth and have only vestigial tails
- they retain many reptilian characteristics
 - birds lay amniotic eggs (but with hard shells)
 - birds have reptilian scales on their feet and lower legs
- birds are different than reptiles in that they have
 - feathers
 - these are derived from reptilian scales but adapted for flight
 - flight skeleton
 - The bones of birds are thin and hollow, reducing weight while providing enhanced points for flight muscle attachment

A key adaptation of birds: feathers.

- birds are **endothermic**
 - their high body temperatures enhance metabolism, satisfying the large energy requirements of flight
- the oldest bird of which there is a clear fossil is *Archaeopteryx*
- there are about 8600 species of birds in the class **Aves** today

Major Order of Birds

Mammals Adapt to Colder Times

- mammals evolved about 220 M.Y.A. and belong to the class Mammalia
 - members of this class share three key characteristics
 - mammary glands
 - hair
 - middle ear

- the first mammals evolved from therapsids
- they were small shrew-like creatures
- they lived inconspicuously in an age dominated by dinosaurs
- the direct descendant of the therapsids were the members of the subclass Protheria
 - protherians laid shelled eggs
 - today they are represented by the **monotremes**
 - this group includes the duckbill platypus and the spiny anteater (echidna)
- the other major mammalian group is the subclass Theria
 - there are two major living therian groups
 - the marsupials
 - the placental mammals

Major Orders of Therian Mammals

- modern mammals have a number of characteristics that make them successful
 - **endothermy** allows for mammals to be active at any time of day or night and to colonize harsh environments
 - placenta is an adaptation for nourishing developing young that will be born live
 - teeth type varies in mammals, allowing specialization to eating habits
 - hooves and horns help with locomotion in running mammals

The placenta.

- today's mammals include
 - monotremes
 - marsupials
 - placental mammals