Sponges, Mollusks, and Worms, Oh My! Animals

General Features of Animals

- animals share many important characteristics, such as they
 - are heterotrophs
 - are multicellular and lack cell walls
 - can move from place to place
 - have diverse forms and habitats
 - reproduce, mostly, by sexual reproduction
 - have a common pattern of development
 - unique tissues

The Animal Family Tree

- the multicellular animals 35 very different phyla
 - to judge which phyla are more closely related, taxonomists compare anatomical features and aspects of embryological development
 - the end result are **phylogenies**, which are basically like family trees
 - the main branches of the phylogenies make possible the evolutionary history of animals
- Kingdom Animalia is traditionally divided into two main branches based on tissue presence
 - Parazoa possess neither tissues nor organs and have no discernible symmetry
 they are represented mostly by the phylum Porifera, the sponges
 - Eumetazoa have a definite shape and symmetry and, in most cases, tissues organized into organs and organ systems
- although very different, the Parazoa and Eumetazoa are thought to have evolved from a common ancestor
 - the shared ancestor was probably a choanoflagellate
 - the choanoflagellate lived over 700 million years ago and was a colonial, flagellated protist
- within the Eumetazoan phylogeny, the family tree branches on the basis of the type of embryological layering
 - Radiata have two embryological layers, an outer ectoderm and an inner endoderm
 - this body plan is called **diploblastic**

- **Bilateria** have a third embryological layer, the **mesoderm**, that occurs between the ectoderm and the endoderm
 - this body plan is called **triploblastic**
- additional branches to the phylogenetic tree were assigned by identifying traits that were important to the evolutionary history of phyla
 - for example, the presence or absence of a body cavity
 - the traditional phylogeny of taxonomists relies on the either-or-nature of categories

The animal family tree: the traditional viewpoint.

- the traditional animal phylogeny is being revised because some of the important characters may not be conserved to the extent previously thought
 - molecular systematics offers a means to construct phylogenic trees using clusters of genes as means to detect relatedness
 - this new approach has resulted into significant refinements of the traditional phylogeny
 - for example, the protostomes have a more complex evolutionary history

The animal family tree: A new look.

Five Key Transitions in Body Plan

- the evolution of animals is marked by five key transitions in body plan
 - 1. evolution of tissues
 - 2. bilateral symmetry
 - 3. body cavity
 - 4. deuterostome development
 - 5. segmentation
- the presence of tissues is the first key transition in the animal body plan
 - only the Parazoa, the sponges, lack defined tissues and organs
 - these animals exist as aggregates of cells with minimal intercellular coordination
 - all other animals besides members of the Parazoa possess tissues
 - they belong to the Eumetazoa
- virtually all animals other than sponges have a definite shape and symmetry
 - **radial symmetry** is a body plan in which all parts of the body are arranged along a central axis
 - if a plane passing through the central axis divides the organism in halves, the halves will be mirror images

- **bilateral symmetry** is body plan with distinct right and left halves that are mirror images
 - the plan allows for specialization among body regions
- the evolution of a body cavity was an important step in animal evolution
 - this internal space allowed for the support of organs, distribution of materials, and coordination of development
 - for example, the digestive tract can be larger and longer
- the subdivision of the body into **segments** is a key transition to the animal body plan that occurs early on during development
- in highly segmented animals, each segment can develop a more or less complete set of adult organ systems
- each segment can function as a separate locomotory unit

Evolutionary trends among the animals.

Sponges: Animals Without Tissues

- sponges, members of the phylum Porifera
 - their bodies a little more than masses of specialized cells embedded in a gel-like matrix
 - clumps of cells disassociated from a sponge can give rise to new sponges
 - the body of a sponge is perforated by many pores
 - **choanocytes** are flagellated cells that line the body cavity of the sponge and draw in water through the pores
 - the sponge is a filter feeder which traps any food particles

Diversity in sponges.

Cnidarians: Tissues Lead to Greater Specialization

- the Radiata include two phyla
 - Cnidaria comprises the hydra, jellyfish, corals and anemones
 - Ctenophora comprises the comb jellies
- the members of the Radiata have a body plan that allows them to interact with their environment on all sides
- a major evolutionary advance in the Radiata is **extracellular digestion** of food
 - digestion begins outside the body in a gut cavity called, the **gastrovascular cavity**
 - this form of digestion allows animals to digest an animal larger than itself

Representative cnidarians.

- **cnidarians** (phylum Cnidaria) are carnivores that capture prey with tentacles that ring their mouths
 - these tentacles and, sometimes, the body surface, bear stinging cells called cnidocytes
 - within each cnidocyte is a harpoon-like barb, called a **nematocyst**, which cnidarians use to spear their prey and they retract towards the tentacle
 - the nematocyst can discharge so explosively that it is capable of piercing the hard shell of a crab

Solid Worms: Bilateral Symmetry

- body symmetry differs among the Eumetazoa
 - **radial symmetry** means that multiple planes cutting the organism in half will produce mirror images
 - **bilateral symmetry** means that only one plane can cut the organism in half to produce mirror images
- most bilaterally symmetrical animals have evolved a definitive head end
 - this process is termed **cephalization**
- the bilaterally symmetrical eumetazoans produce three embryonic layers
 - ectoderm will develop into the outer coverings of the body and the nervous system
 - mesoderm will develop into the skeleton and muscles
 - endoderm will develop into the digestive organs and intestine
- the **solid worms** are the simplest of all bilaterally symmetrical animals
 - the largest phylum of these worms is the Phylum Platyhelminthes, which includes the flatworms
 - flatworms lack any internal cavity other than the digestive tract – this solid condition is called **acoelomate**
 - they have separate organs, including a uterus and testes

Body plan of a solid worm.

Bilateral Body plans

- there are three basic kinds of body plans found in bilaterally symmetrical animals
 - acoelomates have no body cavity
 - pseudocoelomates have a body cavity located between the mesoderm and the endoderm

 coelomates have a body cavity (called a coelom) that develops entirely within the mesoderm

Flatworms

- most flatworms are parasitic but some are free-living
 - flatworms range in size from less than a millimeter to many meters long
- there are two classes of parasitic flatworms
 - flukes
 - tapeworms
- the parasitic lifestyle has resulted in the eventual loss of features not used or needed by the parasite
 - for example, the parasites lack cilia in the adult stage and do not need eye spots
 - this loss of features that lack adaptive purpose for parasitism is sometimes called *degenerative evolution*
- tapeworms are a classic example of degenerative evolution
 - the body of a tapeworm has been reduced to two primary functions
 - eating
 - reproduction
 - if flatworms have a digestive cavity, then it is incomplete
 - the gut branches throughout the body and is involved in both digestion and excretion
 - they are capable of performing some extracellular digestion
 - the parasitic flatworms lack a gut entirely and absorb food directly through their body walls
- flatworms lack a circulatory system and all cells must be within diffusion distance of oxygen and food
- flatworms have a simple nervous system
 - they use sensory pits or tentacles along the sides of the head to detect food, chemical, and movement
 - free-living forms have eyespots to distinguish light from dark
- reproduction in flatworms is complex
 - most flatworms are **hermaphroditic**, meaning that each individual contains both

male and female reproductive structures

- some flatworms have a complex succession of distinct larval stages
- some flatworms are capable of asexual regeneration

Roundworms: The Evolution of a Body Cavity

- a key transition in the evolution of the animal body plan was the evolution of the body cavity
- the evolution of an internal body cavity helped improve the animal body design in three areas
 - circulation
 - movement
 - organ function
- seven phyla of bilaterally symmetrical animals have a pseudocoelom
 - the pseudocoelom serves as a hydrostatic skeleton, a skeleton that gains its rigidity from fluids kept under pressure
 - all pseudocoelomates lack a circulatory system
 - most pseudocoelomates have a complete digestive tract
- the phylum Nematoda contains the greatest number of species among the phyla that are pseudocoelomates
 - the members of this phylum include nematodes, eelworms, and other roundworms
 - they are unsegmented, cylindrical worms covered by a flexible cuticle that is molted as they grow
 - nematodes move in a whip-like fashion

Pseudocoelomates. (a) Nematodes (phylum Nematoda)

- some nematodes are parasitic in humans, cats, dogs, and animals of economic importance
 - heartworm in dogs is caused by a nematode
 - trichinosis is an infection caused by the nematode *Trichinella* and transmitted to humans who eat undercooked pork
 - intestinal roundworms, Ascaris lumbricoides, live in human intestines

Coelomates

- coelomate animals are more successful than pseudocoelomates because of the nature of embryonic development
 - **primary induction** is a process in animal development in which one of the three primary embryonic tissues interacts with another
 - the interaction requires physical contact
 - in coelomates, contact is made possible between mesoderm and endoderm
 - this interaction permits localized portions of the digestive tract to become highly specialized

Annelids: The Rise of Segmentation

- one of the early innovations to body plan to arise among the coelomates was **segmentation**
 - segmentation is the building of a body from a series of similar segments
 - this body plan offers a lot of flexibility in that small changes to segments can produce a new kind of segment with different functions
 - the first segmented animals to evolve were the **annelid worms**, phylum Annelida
- the basic body plan of an annelid is a tube within a tube
 - the digestive tract is suspended within the tube of the coelom
 - the tubes run from mouth to anus
- derived from this basic organization are three characteristics
 - repeated segments
 - specialized segments
 - connections

Mollusks

- the mollusks, members of the phylum Mollusca, are the only coelomates without segmented bodies
- the basic body of a mollusk is comprised of three regions
 - a head-foot
 - a visceral mass containing the body's organs
 - a mantle that envelopes the visceral mass and is associated with the gills
- There are three major groups of mollusks
 - **gastropods**—include the snails and slugs
 - **bivalves**—include clams, oysters, and scallops
 - cephalopods—include the octopi and squids

Three major groups of mollusks.

Arthropods: Advent of Jointed Appendages

- the most successful of all animal groups is the phylum Arthropoda, comprising the **arthropods**
 - these animals have jointed appendages
 - in addition to joints, arthropods have an **exoskeleton** made of chitin
 - the muscles of arthropods attach to the interior of this outer shell
 - the shell offers protection against predators and water loss
- chitin cannot support much weight

- arthropod size is limited as a result
- arthropod bodies are segmented like annelids
 - segments often fuse into functional groups in the adult stage

Segmentation in insects.

Protostomes and Deuterostomes

• there are two major kinds of coelomate animals representing two distinct evolutionary lines

protostomes

• the mouth develops from or near the blastopore

deuterostomes

• the anus forms from or near the blastopore; the mouth forms on another part of the blastula

Figure 25.34 Embryonic development in protostomes and deuterostomes.

- deuterostomes also differ from protostomes in three other fundamental ways
 - the pattern of cleavage
 - protostomes have spiral cleavage while deuterostomes have radial cleavage
 - fating of cells
 - it occurs later in deuterostome cleavage than in protostome cleavage
 - origin of the coelom

Echinoderms: The First Deuterostomes

- echinoderms belong to the phylum Echinodermata
 - echinoderm means "spiny skin" and refers to the calcium-rich ossicles that protude just beneath the echinoderm's skin
 - they are entirely marine animals and include sea stars, sea urchins, sand dollars, and sea cucumbers
 - all are bilaterally symmetrical as larvae but become radially symmetrical as adults

Diversity in echinoderms.

- a key adaptation of echinoderms is the water vascular system
 - this system is a fluid-filled and composed of a central ring canal around which five radial canals extend out into the arms
 - from each radial canal short side branches extend to form thousands of tiny, hollow tube feet
- most echinoderms reproduce sexually but asexual regeneration is also common

Chordates: Improving the Skeleton

• chordates belong to the phylum Chordata and are deuterostome coelomates

- they exhibit a truly internal endoskeleton with muscles attached to an internal rod, called a notochord
- this innovation opened the door to large body sizes not possible in earlier animal forms
- the approximately 56K species of chordates share four principal features
 - notochord
 - nerve cord
 - pharyngeal pouches
 - postanal tail
- all chordates have all four of these characteristics at some time in their lives.
- not all chordates are vertebrates
 - tunicates and lancelets
- vertebrate chordates differ from tunicates and lancelets in two important respects
 - vertebrates have a backbone
 - this replaces the role of the notochord
 - vertebrates have a distinct and well-differentiated head

A mouse embryo.