"And the Green Grass Grew All Around and Around, the Green Grass Grew All Around..." Evolution of Plants

Adapting to Terrestrial Living

- Plants are complex multicellular organisms that are autotrophs
 - they feed themselves by photosynthesis
 - they occur almost exclusively on land
 - they are the dominant organisms on the surface of the earth
 - there are about 263,500 species of plants today
- The green algae that were probably the ancestors of today's plants are aquatic organisms that are not well adapted to living on land
- Before their descendants could live on land, they had to overcome many environmental challenges
 - how to absorb minerals?
 - how to conserve water?
 - how to reproduce on land?
- Plants require relatively large amounts of six inorganic minerals: N, K, Ca, P, Mg, and S
- Each of these minerals constitutes 1% or more of a plant's dry weight
- Plants must absorb these materials, along with water, through their **roots**
 - the first plants were symbiotically involved with **mycorrhizae**
- One of the key challenges to living on land is to avoid drying out
 - plants have a watertight outer covering called a cuticle, which has a waxy consistency
 - water enters plants only through the roots while the cuticle prevents water loss to the air
 - specialized pores called stomata (singular, stoma) allow passage for water through the cuticle
 - they are found in the leaves and, sometimes, the green portion of stem
 - they allow for the passage of CO_2 into the plant for photosynthesis and H_2O vapor and O_2 to pass out

A stoma

- Reproducing sexually on land presented special challenges
 - as plants could not move, it was necessary for plants to pass gametes from one individual to another
 - the first plants needed a film of water for a sperm to swim to an egg and fertilize

it

- later, pollen evolved, providing a means of transferring gametes without drying out
- In early plants, meiosis was delayed and the cells of the zygote divided to produce a multicellular diploid structure
- This resulted in an **alternation of generations**, in which a diploid generation alternates with a haploid one
 - the diploid generation is called the **sporophyte**
 - the haploid generation is called the **gametophyte**

Generalized plant life cycle

Two types of gametophytes

Plant Evolution

- Four key evolutionary advances occurred in the evolution of the plant kingdom
 - alternation of generations
 - the sporophyte becomes the dominant generation in all but the earliest plants
 - vascular tissue
 - transports water and nutrients through the plant body and provides structural support
 - seeds
 - seeds provide nutrients and protection for the plant embryo until it encounters favorable growing conditions
 - flowers and fruits
 - improved the chances of successful mating in sedentary organisms and facilitated dispersal of their seeds

Plant Phyla

Plant Phyla

Nonvascular Plants

- The first successful land plants had no vascular system
 - as a result, the maximum size of the plant was greatly limited because all materials had to be transported by osmosis and diffusion
 - only two phyla of living plants completely lack a vascular system
 - liverworts (phylum Hepaticophyta)
 - hornworts (phylum Anthocerophyta)
 - a third phylum of plants has a simple conducting tissue system of soft strands
 - mosses (phylum Bryophyta)

The life cycle of a moss

The Evolution of Vascular Tissue

- **vascular tissues** are specialized cylindrical or elongated cells that form a network throughout a plant
 - the earliest vascular plants grew by cell division at the tips of the stem and roots
 this primary growth made plants longer or taller
 - later vascular plants developed a new pattern of growth in which a ring of cells could divide around the periphery of the plant
 - this secondary growth made it possible for a plant stem to increase in diameter
 - the product of secondary growth is **wood**

The vascular system of a leaf

Seedless Vascular Plants

- There are two phyla of living seedless vascular plants
 - **ferns** (phylum Pterophyta)
 - in ferns, the sporophyte generation is much larger and more complex than the gametophyte
 - the leaves are the sporophyte are called **fronds**
 - club mosses (phylum Lycophyta)

Seedless vascular plants

Fern life cycle

Evolution of Seed Plants

- The seed is a crucial adaptation to life on land because it protects the embryonic plant when it is at its most vulnerable stage
- Seed plants produce two kinds of gametophytes, male and female, which develop completely within the sporophyte
 - male gametophytes are called **pollen grains**
 - they arise from **microspores**
 - a female gametophyte contains the egg within an **ovule**
 - it develops from a **megaspore**
- There is no need for free water in the fertilization process
 - pollination by insects, wind, or other agents transfers pollen to an ovule
 - the pollen grain then cracks open and sprouts as a **pollen tube**, bringing sperm cells directly to the egg
- All seed plants are derived from a single common ancestor
 - gymnosperms
 - in these seed plants, the ovules are not completely enclosed by sporophyte tissue at the time of pollination

- angiosperms
 - in these seed plants, the most recently evolved of all plant phyla, the ovules are completely enclosed in sporophyte tissue called the **carpel** at the time of pollination
- A seed has three visible parts
 - 1. a sporophyte embryo
 - 2. endosperm, a source for food for the developing embryo
 - in some seeds, the endosperm is used up by the embryo and stored as food in structures called cotyledons
 - 3. a drought-resistant protective cover

Basic structure of seeds

- Seeds improved the adaptation of plants to living in land in the following respects
 - dispersal
 - · facilitates the migration and dispersal into new habitats
 - dormancy
 - permits plants to postpone development until conditions are favorable
 - germination
 - controls when the plant develops so that it can be synchronized with critical aspects of the plant's habitat
 - nourishment
 - provisions the seed during the critical period just after germination

Seeds allow plants to bypass the dry season

Gymnosperms

- Four phyla constitute the gymnosperms
 - **conifers** (phylum Coniferophyta)
 - trees that produce their seeds in cones and most have needle-like leaves
 - cycads (phylum Cycadophyta)
 - have short stems and palmlike leaves
 - gnetophytes (phylum Gnetophyta)
 - contains only three kinds of very unusual plants
 - ginkgo (Ginkgophyta)
 - only one living species, the maidenhair tree, which has fan-shaped leaves

Gymnosperms

- The life cycle of conifers is typical of gymnosperms
 - conifers form two types of cones
 - seed cones contain the female gametophytes
 - pollen cones contain the pollen grains (male gametophytes)
 - conifer pollen grains are dispersed by wind to the seed cones
 - the fertilized seed cones produce seeds, which are also wind-dispersed

• the germinated seed will grow into a new sporophyte plant

Life cycle of a conifer

Rise of the Angiosperms

- Ninety percent of all living plant species are angiosperms
 - virtually all of our food is derived, directly or indirectly, from angiosperms
 - angiosperms use flowers to use insects and other animals to carry pollen for them
 fertilization is assured in a direct pollination from one individual of a species to another
- The basic structure of a flower consists of four concentric circles, or **whorls**, connected to a base called a **receptacle**
 - the **sepals** form the outermost whorl and typically protect the flower from physical damage
 - the **petals** are the second whorl and serve to attract pollinators
 - the third whorl is called the **stamens** and contains the "male" parts that produce pollen
 - a swollen **anther** occurs at the tip of an anther and contains pollen
 - the innermost whorl is the **carpel** of the flower and contains the "female" parts that produce the egg
 - the ovules occur in the bulging base of the carpel, called the **ovary**
 - a stalk called the **style** rises from the ovary and ends with a sticky tip called a **stigma**
 - the stigma receives pollen

An angiosperm flower

Why Are There Different Kinds of Flowers?

- Insects and plants have coevolved so that certain insects specialize in visiting particular kinds of flowers
 - as a result, a particular insect carries pollen from one individual flower to another *of the same species*
 - bees are the most numerous insect pollinator
- Birds also pollinate some flowers, especially red ones
- Grasses and some other angiosperms have reverted to wind pollination

How a bee sees a flower

Red flowers are pollinated by hummingbirds

Improving Seeds: Double Fertilization

- Angiosperms produce a special, highly nutritious tissue called **endosperm** within their seeds
 - the pollen grain contains two haploid sperm

- the first sperm fuses with the egg at the base of the ovary
- the second sperm fuses with polar nuclei to form a triploid endosperm cell, which divides faster than the zygote and gives rise to the endosperm tissue
- the process of fertilization to produce both a zygote and endosperm is called **double fertilization**

Life cycle of an angiosperm

- In some angiosperms, the endosperm is fully used up by the time the seed is mature
 - food reserves are stored by the embryo in swollen, fleshly leaves called cotyledons, or seed leaves
 - dicots have two cotyledons
 - monocots have one cotyledon

Dicots and monocots

Improving Seed Dispersal: Fruits

- A mature ovary that surrounds the ovule becomes all or part of the fruit
 - a fruit is mature ripened ovary containing fertilized seeds
 - angiosperms use fruits to have animals aid in the dispersal of seeds
 - although eaten by animals, the seeds within the fruit are resistant to chewing and digestion
 - they pass out of the animal with the feces, ready to germinate at a new location far from the plant
 - some fruits are dispersed by water or wind

Organization of a Vascular Plant

- A vascular plant is organized along a vertical axis
 - the part below ground is called the **root**
 - the root penetrates the soil and absorbs water and ions
 - it also anchors the plant
 - the part above ground is called the **shoot**
 - the shoot consists of the **stem** and **leaves**
 - the stem serves as a framework for positioning the leaves
 - the leaves are where most photosynthesis takes place
- There are several specialized epidermal cells that make up dermal tissue
 - guard cells are paired cells that flank an opening called a stoma
 - the guard cells regulate the passage of oxygen, carbon dioxide, and water vapor across the epidermis
 - **trichomes** are outgrowths of the epidermis that occur on the shoot and give it a "fuzzy" appearance
 - they play an insulating role and affect heat and water balance
 - root hairs are extensions of the epidermis below ground and keep the root in intimate contact with soil particles
 - root hairs increase the surface area of the root

Guard cells and trichomes

- There are two types of vascular tissues
 - **xylem** is the plant's principal water-conducting tissue
 - it forms a continuous system that runs throughout the plant body
 - water (and dissolved minerals) pass from the roots to the shoots
 - when water reaches the leaves, most exits through the stomata
 - **phloem** is the principal food-conducting tissue

Roots

- Roots have a central column of xylem with radiating arms
 - alternating within the radiating arms of xylem are strands of primary phloem
 - surrounding the central column, and forming its boundary, is a cylinder of cells called the **pericycle**
 - branch, or lateral, roots are formed from cells of the pericycle

A root cross section

Stems

- Stems often experience both primary and secondary growth
 - stems are the source of an economically important product—wood
- In the primary growth of a shoot, leaves first appear as leaf primordia
 - these are rudimentary leaves that cluster around the apical meristem
 - they unfold and grow as the stem elongates
- Within soft, young stems, the vascular tissue strands are arranged differently in dicots versus monocots
 - in dicots, vascular bundles (containing primary xylem and primary phloem) are arranged around the outside of the stem
 - in monocots, vascular bundles are scattered throughout the stem

A comparison of dicot and monocot stems

Leaves

- Leaves are usually the most prominent shoot organ and are structurally diverse
 - growth occurs by means of marginal meristems
 - the marginal meristems grow outward and ultimately form the **blade** (the flattened portion) of the leaf
 - once a leaf is fully expanded, its marginal meristems cease to grow

Dicot and monocot leaves

Water Movement

- Several factors are at work to move water up the height of a plant
 - the initial movement of water into the roots of a plant involves osmosis

- water moves into the cells of the root because the fluid in the xylem contains more solutes than the surroundings
 - this osmotic force is called **root pressure** but, by itself, is not sufficient to "push" water up a plant's stem
- In addition to root pressure, capillary action adds "pull" to the movement of water up a plant stem
 - **capillary action** results from the tiny electrical attractions of polar water molecules to surfaces that carry electrical charge
 - this attraction is called **adhesion**
 - but capillary action, by itself, is not strong enough to "pull" water up the plant stem

Capillary action

- A final "pull" to the process of moving water up a plant shoot is provided by **transpiration**
 - water evaporating from the top (leaf) of the tube pulls the column of water from the bottom (root)
 - the column of water does not collapse because water molecules are attracted to each other
 - this process is called **cohesion**
 - the narrower the diameter of the tube, the more **tensile strength**, or resistance to separation, of the water column
- The combination of gravity, tensile strength, and cohesion affects water movement
 - the whole process is explained by the **cohesion-adhesion-tension theory**
- **Transpiration** is the process by which water leaves a plant
 - more than 90% of the water taken in by a plant is lost to the atmosphere, mostly through the leaves
 - water first passes into the pockets of air in the spongy mesophyll and then evaporates through the stomata
 - high humidity and low temperatures increase transpiration rates

How transpiration works

- The only way that plants can control water loss on a short-term basis is to close their stomata
 - but plants need to balance closing their stomata with keeping them open for providing access to carbon dioxide
 - the stomata open and close because of changes in the water pressure of their guard cells
- When the guard cells are plump and swollen with water, they are said to be **turgid** and the stoma is open
- When the guard cells lose water, the stoma closes
- Root hairs greatly increase the surface area of roots

- root hairs are turgid because they contain a higher concentration of dissolved solutes than the soil
- minerals also enter the root hairs because they contain a variety of ion transport channels that transport specific ions
 - this may involve active transport
 - the minerals are transported by the xylem while dissolved in water

Root hairs

The flow of materials into, out of, and within a plant

Carbohydrate Transport

- **Translocation** is the process by which most of the carbohydrates manufactured in plants are moved through the phloem
 - the movement is a passive process
 - the **mass flow** of materials transported occurs because of water pressure generated by osmosis
 - an area where sucrose is made is called a **source** and an area where sucrose is delivered from the sieve tubes is called a **sink**
 - sucrose moves from a source to a sink by a process described by the pressureflow hypothesis

How translocation works

Essential Plant Nutrients

- Minerals are involved in plant metabolism in many ways
 - nitrogen (N) is an essential part of proteins and nucleic acids
 - potassium (K) ions are used to regulate turgor pressure in guard cells
 - calcium (Ca) is an essential part of cell walls
 - magnesium (Mg) is a part of the chlorophyll molecule
 - **phosphorous (P)** is a part of ATP and nucleic acids
 - sulfur (S) is a key component of the amino acid, cysteine
- Other essential minerals for plant health include chlorine (Cl), iron (Fe), boron (B), manganese (Mn), zinc (Zn), copper (Cu), and molybdenum (Mb)
- Most plants acquire minerals from the soil, although some **carnivorous** plants are able to use other organisms directly as sources of nitrogen, just as animals do

A carnivorous plant

Angiosperm Reproduction

- Reproduction in flowering plants, the angiosperms, can be asexual or sexual
 - asexual reproduction is common in stable environments
 - this **vegetative reproduction** results when new individuals are simply cloned from parts of the parent
 - asexual reproduction allows individuals to reproduce with lower investment of

energy than sexual reproduction

- Sexual reproduction in plants involves an alternation of generations
 - diploid sporophyte generation gives rise to a haploid gametophyte generation
 - the male gametophytes are **pollen grains** that come from **microspores**
 - the female gametophyte is the **embryo sac**, which develops from a **megaspore**
 - these gametophytes are produced in separate, specialized structures of the angiosperm flower
 - but both usually occur together in the same flower
 - they are produced seasonally
- Most flowers contain male and female parts
 - the male parts are called **stamens**
 - the female part is called the **carpel**
- Flowers that contain only male or only female parts are known as **imperfect**
 - plants that contain imperfect flowers that produce only ovules or only pollen are known as dioecious
 - plants that contain imperfect flowers of both male and female on the same plant are called **monoecious**

Fruit

- During seed formation, the flower ovary begins to develop into **fruit**
 - fruits form in many ways and exhibit a wide array of modes of specialization
 - fruits with fleshy covering are normally dispersed by bird and other vertebrates
 the animals carry seeds from place to place before excreting them as solid waste
 - some fruits are dispersed by wind or by attaching themselves to the fur of mammals or the feathers of birds
 - some fruits are dispersed by water